Shadows of Fuzzy Sets { A Natural Approach Towards Describing 2 - D and Multi - D Fuzzy Uncertainty in Linguistic

نویسندگان

  • Hung T. Nguyen
  • Vladik Kreinovich
چکیده

|Fuzzy information processing systems start with expert knowledge which is usually formulated in terms of words from natural language. This knowledge is then usually reformulated in computer-friendly terms of membership functions, and the system transform these input membership functions into the membership functions which describe the result of fuzzy data processing. It is then desirable to translate this fuzzy information back from the computer-friendly membership functions language to the human-friendly natural language. In general, this is diicult even in a 1-D case, when we are interested in a single quantity y; however, the fuzzy research community has accumulated some expertise of describing the resulting 1-D membership functions by words from natural language. The problem becomes even more complicated in 2-D and multi-D cases, when we are interested in several quantities y1; : : : ; ym, because there are fewer words which describe the relation between several quantities than words describing a single quantity. To reduce this more complicated multi-D problem to a simpler (although still diicult) 1-D case, L. Zadeh proposed, in 1966, to use words to describe fuzzy information about diierent combinations y = f (y1; : : : ; ym) of the desired variables. This idea is similar to the use of marginal distributions in probability theory. The corresponding terms are called shadows of the original fuzzy set. The main question is: do we lose any information in this translation? Zadeh has shown that under certain conditions, the original fuzzy set can be uniquely reconstructed from its shadows. In this paper, we prove that for appropriately chosen shadows, the reconstruction is always unique. Thus, if we manage to describe the original membership function by linguistic terms which describe different combinations y, this description is lossless. Humans often describe their knowledge by terms from natural language like \young", \large", etc. If we want a computer to be able to use this knowledge, we must re-formulate it in terms which are understandable to a computer. One of the main objectives of fuzzy methodology is to provide such a translation. Fuzzy logic describes each natural language term t deened on a set X by the corresponding membership function t (x) : X ! 0; 1], a function which describes, for each element x of the domain X, to what extent this element x satisses the property t. Fuzzy methodology provides us with the tools (t-norms, t-conorms, fuzzy inference rules, etc.) …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shadows of Fuzzy Sets { A Natural Way to Describe 2 - D and Multi - DFuzzy Uncertainty in Linguistic

Fuzzy information processing systems start with expert knowledge which is usually formulated in terms of words from natural language. This knowledge is then usually reformulated in computer-friendly terms of membership functions, and the system transform these input membership functions into the membership functions which describe the result of fuzzy data processing. It is then desirable to tra...

متن کامل

Correlation coefficients of linguistic interval hesitant fuzzy sets and their application

To address the hesitancy, inconsistency and uncertainty of decision makers’ cognitions, linguistic interval hesitant fuzzy sets (LIHFSs) are efficient tools. This paper focuses on studying the application of LIHFSs. To do this, two correlation coefficients of LIHFSs are defined, which needn't consider the length of elements in LIHFSs or the arrangement of their possible interval values. To addr...

متن کامل

A Multi-Criteria Analysis Model under an Interval Type-2 Fuzzy Environment with an Application to Production Project Decision Problems

Using Multi-Criteria Decision-Making (MCDM) to solve complicated decisions often includes uncertainty, which could be tackled by utilizing the fuzzy sets theory. Type-2 fuzzy sets consider more uncertainty than type-1 fuzzy sets. These fuzzy sets provide more degrees of freedom to illustrate the uncertainty and fuzziness in real-world production projects. In this paper, a new multi-criteria ana...

متن کامل

Correlation Coefficients for Hesitant Fuzzy Linguistic Term Sets

Here are many situations in real applications of decision making where we deal with uncertain conditions.  Due to the different sources of uncertainty,  since its original definition of fuzzy sets in 1965 cite{zadeh1965},  different generalizations and extensions of fuzzy sets have been introduced: Type-2 fuzzy sets cite{6,13}, Intuitionistic fuzzy sets cite{1}, fuzzy multi-sets cite{37} and et...

متن کامل

Multiple attribute group decision making with linguistic variables and complete unknown weight information

Interval type-2 fuzzy sets, each of which is characterized by the footprint of uncertainty, are a very useful means to depict the linguistic information in the process of decision making. In this article, we investigate the group decision making problems in which all the linguistic information provided by the decision makers is expressed as interval type-2 fuzzy decision matrices where each of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999